
Systematic XACML request generation for testing purposes

Antonia Bertolino, Francesca Lonetti, Eda Marchetti
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

Consiglio Nazionale delle Ricerche
via G. Moruzzi, 1 - 56124 Pisa, Italy

{antonia.bertolino, francesca.lonetti, eda.marchetti}@isti.cnr.it

Abstract—A widely adopted security mechanism is the spec-
ification of access control policies by means of the XACML
language. In this paper, we propose a framework, called X-
CREATE, for the systematic generation of test inputs (XACML
requests). Differently from existing tools, X-CREATE exploits
the XACML Context Schema. In particular, the tool applies
a XML-based methodology (XPT) to systematically produce a
set of intermediate instances, covering the XACML Context
Schema. Moreover, for request generation, X-CREATE applies
a procedure for parsing the policy under test and assigning
values to the generated intermediate instances. The aim of the
proposed framework is twofold: testing of policy evaluation
engines and testing of access control policies. The experimental
results show that the fault detection effectiveness of X-CREATE
is similar or higher than that of existing approaches.

Keywords-XACML; Test suite generation; Policy testing.

I. INTRODUCTION

An important aspect in the security of modern information
management systems is the control of accesses. Data and
resources must be protected against unauthorized, malicious
or improper usage or modification. For this purpose, a widely
adopted security mechanism is the specification of access
control policies by means of policy languages such as the
eXtensible Access Control Markup Language (XACML) [1].
The policies rule various aspects such as: the level of
confidentiality of data, the procedures for managing data
and resources, the classification of resources and data into
category sets with different access controls. An important
software component of the access control systems is the
Policy Decision Point (PDP) that evaluates the requests
against the access control policies.

Due to the huge amount of information and resources to
be managed and ruled in policies, their definition, imple-
mentation, modification and maintenance are very critical
activities for policy developers. The risks grow in the case
of complex, distributed and large systems, where multiple
policies have to be managed. Hence, to prevent security
problems a rigorous and accurate verification and testing
process must be adopted.

Policies, or more general metamodels of security policies,
provide a model that specifies the access scheme for the
various actors accessing the resources of the system. This
model has been successfully exploited for model-based

testing (e.g., [2]). However, for the purpose of test case
generation a second important model composes the access
control mechanism: the standard format representing all the
possible compliant requests. The potential of this second
model has not been yet fully exploited.

In a XACML access control system every incoming re-
quest must be conforming to a specific XML Schema called
the Context Schema [1] 1. Once for all and independently
from any specified policy this schema describes the overall
structure of the accepted input requests for the PDP. Thus
this XML Schema is a model formally describing what
constitutes an agreed valid input. The XACML instances,
formatted according to the rules of the referred Context
Schema, represent the conforming requests, i.e. allowed
naming and structure of data for access requests.

To the best of our knowledge, there are not access control
policy testing methodologies that exploit this interesting and
important model of data input. Thus our proposal here is to
combine the potential of the Context Schema in describing
input data of the requests in open and standard form, with
a method for the systematic generation of policy test suites.

Our proposed method, called X-CREATE (XaCml RE-
quests derivAtion for TEsting), is not in contrast or alter-
native with the existing policy testing approaches, rather
it suggests a further source of test case generation, so far
unexplored.

In particular our contribution includes:
• A test strategy for generating compliant XACML re-

quests from the XACML Context Schema. We cover
all interesting combinations of the schema by adopting
a systematic black-box criterion [3].

• A universally valid generic test suite, derived by our
proposed test strategy, which is customizable to any
specific policy. The test suite provides a skeleton of
XML instances for every possible request structure
derivable by the schema of the requests.

• An algorithm for customizing the test suite skeletons to
the peculiarities of a specific policy. As a result a ready-

1For readability purposes in this paper we refer to the XACML 1.0
Specification Set and not to the XACML 2.0 Specification Set. However,
we identically applied the proposed methodologies and techniques to the
2.0 version.



to-use set of requests and responses is systematically
constructed.

• A preliminary empirical validation on a case study
comparing X-CREATE against an existing competitor
tool.

The paper is structured as follows: in the next section,
we provide a basic description of the XACML language.
In Section III and IV related work and an overview of our
approach are presented respectively. Then we describe the
X-CREATE framework in Section V. A discussion about the
effectiveness of the proposed approach is in Section VI and
general conclusions are drawn in Section VII.

II. XACML SPECIFICATION

XACML [1] is a platform-independent XML based stan-
dard language designed by the Organization for the Ad-
vancement of Structured Information Standards (OASIS).

In this section we provide an overview of the XACML
features for the access control decisions. At the root of all
XACML policies is a Policy or a PolicySet. A PolicySet can
contain other Policies or PolicySets.

A Policy consists of a Target, a set of Rules and a Rule
combining algorithm. The Target specifies the Subjects, the
Resources and the Actions on which a policy can be applied.
If a request satisfies the target of the policy, then the set
of rules of the policy is checked, otherwise the policy is
skipped without examining its rules. A Rule is the basic
element of a policy. It is composed by a Target, that is
similar to the policy target and specifies the constraints of
the requests to which the rule is applicable. The heart of
most rules is a Condition that is a boolean function evaluated
when the rule is applicable to a request. The result of the
condition evaluation is the rule effect (Permit or Deny) if the
condition is evaluated to be true, NotApplicable otherwise.
If an error occurs during the application of a policy to the
request, Indeterminate is returned as decision. More than
one rule in a policy may be applicable to a given request.
The rule combining algorithm specifies the approach to be
adopted to compute the decision result of a policy containing
rules with conflicting effects. The access decision is given by
considering all attribute values describing the subjects, the
resource, and the action of an access request and comparing
them with the attribute values of a policy.

We show in Listing 1 an example of a simplified XACML
policy ruling library access. Its target (lines 5-9) says that
this policy applies to any subject, resource and action. This
policy has a first rule (lines 10-54) with a target (lines 12-36)
specifying that this rule applies only to the access requests of
a “write” action of the “http://library.com/record” resource.
The rule condition will deny access when the requester
subject role is not “researcher”, “professor”, or “staff”. The
effect of the second rule (lines 55-92) is “Permit” when the
subject is “Julius”, the action is “read”, and the resource
is “http://library.com/record/journals”. The rule combining

algorithm of the policy (line 4) determines to return the
result of the evaluation of the first applicable rule.

The XACML Technical Committee provides a Policy
Schema for the validation of XACML policies and a Con-
text Schema for the validation of XACML requests and
responses. Figure 1 sketches the structure of the schema and
the occurrences of elements only for the part concerning the
requests derivation.

1 <Policy xmlns=" u r n : o a s i s : n a m e s : t c : x a c m l : 1 .0 : p o l i c y "

2 PolicyId=" P o l i c y E x a m p l e "

3 RuleCombiningAlgId=" rule - c o m b i n i n g - a l g o r i t h m : f i r s t -

a p p l i c a b l e ">
4 <Target>
5 <Subjects><AnySubject/></Subjects>
6 <Resources><AnyResource/></Resources>
7 <Actions><AnyAction/></Actions>
8 </Target>
9 <Rule

10 RuleId=" P o l i c y E x a m p l e : r u l e 1 " Effect=" D e n y ">
11 <Target>
12 <Subjects><AnySubject/></Subjects>
13 <Resources>
14 <Resource>
15 <ResourceMatch
16 MatchId=" anyURI - e q u a l ">
17 <AttributeValue
18 DataType=" a n y U R I ">http://library.com/record</

AttributeValue>
19 <ResourceAttributeDesignator
20 AttributeId=" r e s o u r c e - id " DataType=" a n y U R I "/>
21 </ResourceMatch>
22 </Resource>
23 </Resources>
24 <Actions>
25 <Action>
26 <ActionMatch
27 MatchId=" string - e q u a l ">
28 <AttributeValue
29 DataType=" s t r i n g ">write</AttributeValue>
30 <ActionAttributeDesignator
31 AttributeId=" action - id " DataType=" s t r i n g "/>
32 </ActionMatch>
33 </Action>
34 </Actions>
35 </Target>
36 <Condition
37 FunctionId=" f u n c t i o n : n o t ">
38 <Apply
39 FunctionId=" string - at - least - one - member - of ">
40 <SubjectAttributeDesignator
41 AttributeId=" r o l e " MustBePresent=" f a l s e " DataType="

s t r i n g "/>
42 <Apply
43 FunctionId=" string - bag ">
44 <AttributeValue
45 DataType=" s t r i n g ">researcher</AttributeValue>
46 <AttributeValue
47 DataType=" s t r i n g ">professor</AttributeValue>
48 <AttributeValue
49 DataType=" s t r i n g ">staff</AttributeValue>
50 </Apply>
51 </Apply>
52 </Condition>
53 </Rule>
54 <Rule
55 RuleId=" P o l i c y E x a m p l e : r u l e 2 " Effect=" P e r m i t ">
56 <Target>
57 <Subjects>
58 <Subject>
59 <SubjectMatch
60 MatchId=" string - e q u a l ">
61 <AttributeValue
62 DataType=" s t r i n g ">Julius</AttributeValue>
63 <SubjectAttributeDesignator
64 AttributeId=" s u b j e c t - id " DataType=" s t r i n g "/>
65 </SubjectMatch>



66 </Subject>
67 </Subjects>
68 <Resources>
69 <Resource>
70 <ResourceMatch
71 MatchId=" anyURI - e q u a l ">
72 <AttributeValue
73 DataType=" a n y U R I ">http://library.com/record/

journals</AttributeValue>
74 <ResourceAttributeDesignator
75 AttributeId=" r e s o u r c e - id " DataType=" a n y U R I "/>
76 </ResourceMatch>
77 </Resource>
78 </Resources>
79 <Actions>
80 <Action>
81 <ActionMatch
82 MatchId=" string - e q u a l ">
83 <AttributeValue
84 DataType=" s t r i n g ">read</AttributeValue>
85 <ActionAttributeDesignator
86 AttributeId=" action - id " DataType=" s t r i n g "/>
87 </ActionMatch>
88 </Action>
89 </Actions>
90 </Target>
91 </Rule>
92 </Policy>

Listing 1. An example of XACML policy

III. RELATED WORK

The natural, but clearly not cost-effective, approach for
testing access control policies is to manually derive a set
of test inputs that correspond to requests. However the
complexity of the policy prevents the manual specification
of a set of test cases capable of covering all the possible
interesting critical situations or faults. This implies the need
of automated test cases generation. Current approaches can
be categorized into:

Synthesis-based. In this case, available properties and
specifications can be used to automatically synthesize input
values useful for checking the policy itself. A proposal of
generic approaches for test synthesis is for instance [4] while
Cirg [5] is one of the few specific for XACML.

Model-based. Usually these approaches are based on
either the representation of policy implied behavior by
means of models [6], [7] or the role based access control
models [8], [2]. These approaches provide methodologies
and tools for automatically generate abstract test cases so
to verify functional aspects and vulnerabilities and discover
policy specification or implementation faults.

Conformance. The goal is to verify the mapping between
the policy reference model and its specification [9], [10]. In
particular, only with reference to XACML 1.0 and 1.1, the
XACML Technical Committee has provided a Conformance
Tests suite [1]2 for verifying the PDP correct behavior.

However, all the available proposals are based on the
policy. To the best of our knowledge, none of the available
methodologies analyzes the domain of conforming requests.
In this paper, we are the first to take this orthogonal

2Also a DRAFT XACML 2.0 Conformance Tests suite is available.

direction: focus the testing activity not on the policy point-
of-view but also on the perspective of the correct domain of
the requests.

IV. APPROACH OVERVIEW

Our approach focuses on the XACML Context Schema
(see Figure 1). The solution we propose is to derive a test
suite of conforming requests from this standard schema. The
peculiarity of our proposal is that since there exists one
unique XACML Context Schema, that is independent from
the policy specification, a generic conformance test suite
of requests can be derived once and for all, as explained in
detail in section V. Each request in this generic test suite is a
general structure of a valid XACML request instance. These
structurally different requests (or an opportunely chosen sub-
set thereof) can be instantiated from time to time according
to the policy specification considered, by suitably varying the
input values and in practice originating an arbitrary number
of final request instances. These requests can be used for
two different testing purposes:

Testing the policy implementation. In this scenario we
assume that the system under test (SUT) is the PDP im-
plementing a policy specification that is considered correct.
The actors of this scenario are: a Test Generator which
takes as input the XACML Context Schema and the policy
specification for generating a set of XACML requests, the
PDP, and an oracle (e.g. as that in [11]) that is able
to recognize if the PDP response is correct and provide
accordingly a verdict (pass/fail).

Testing policy specification. In this scenario we consider
a situation in which a policy developer wants to check
the correctness of a policy specification. The actors of this
scenario include again a Test Generator, a PDP that provides
the responses and the policy developer who provides the
policy specification and the oracle verdicts.

V. FRAMEWORK

In this section, we outline the framework of X-CREATE
for generating a set of XACML requests starting from
the XACML Context Schema. The framework consists of
three main components: A. intermediate-request generation;
B. policy-under-test analysis; C. request values assignment.

A. Intermediate-request generation

Given the XACML Context Schema, we apply the XML-
based Partition Testing (XPT) approach proposed in [12].
This approach generates conforming XML instances from
a XML Schema by applying a variant of the well-known
Category Partition (CP) method [3] and traditional boundary
condition. In particular, the occurrences declared for each
element in the schema are analyzed and, applying a bound-
ary condition strategy, the border values (minOccurs and
maxOccurs) to be considered for the instances generation
are derived.



Figure 1. Sketch of XACML 1.0 Context Schema for requests derivation

Combining the occurrence values assigned to each ele-
ment, XPT derives a set of intermediate instances. The final
instances are derived from these intermediate ones by assign-
ing values to the various elements. This methodology has
been already implemented into a tool called TAXI [12][13].

Given the XACML Context Schema, by the tool TAXI
we can derive 3Y ∗ 2Z intermediate instances, where Y is
the number of schema elements with unbounded cardinality,
and Z is the number of elements having [0,1] cardinality. In
particular, in the XACML Context Schema, only for the part
concerning the requests specification (see Figure 1), there are
10 elements with unbounded occurrence and 2 having [0,1]
cardinality. The other elements have cardinality 1. Thus,
the application of TAXI to the XACML Context Schema,
(only for the part concerning the requests specification)
will generate a maximum number of 310 ∗ 22 = 236196
structurally different intermediate requests. These (or an
opportunely selected subset) will be then filled with the
appropriate input values so to generate the final requests.
Giving random values to these intermediate requests, an
infinite number of final requests can be generated.

Note that, the user can choose the generation, by the TAXI
tool interface, of a number of intermediate requests lower
than 236196. Once the number of intermediate requests to
be generated is fixed, TAXI will automatically select a corre-
sponding number of intermediate instances, by applying the
well-known pair-wise approach [14], that has been shown to
be effective in picking a test subset with good fault detection
capability.

Listings 2 and 3 are samples of two intermediate generated
requests. In particular, the former is obtained by setting the
resource attribute element occurrence to 2 and all the other
occurrences to the minOccur value, the latter is obtained
by setting all occurrences to the minOccur value. Note that
in both examples the values for elements and attributes are
not yet specified.

1 <Request xmlns=" u r n : o a s i s : n a m e s : t c : x a c m l : 1 .0 : c o n t e x t ">
2 <Subject>

3 <Attribute AttributeId=" " DataType=" ">
4 <AttributeValue/>
5 </Attribute>
6 </Subject>
7 <Resource>
8 <Attribute AttributeId=" " DataType=" ">
9 <AttributeValue/>

10 </Attribute>
11 <Attribute AttributeId=" " DataType=" ">
12 <AttributeValue/>
13 </Attribute>
14 </Resource>
15 <Action>
16 <Attribute AttributeId=" " DataType=" ">
17 <AttributeValue/>
18 </Attribute>
19 </Action>
20 </Request>

Listing 2. Intermediate request 1

1 <Request
2 xmlns=" u r n : o a s i s : n a m e s : t c : x a c m l : 1 .0 : c o n t e x t ">
3 <Subject>
4 <Attribute AttributeId=" " DataType=" ">
5 <AttributeValue/>
6 </Attribute>
7 </Subject>
8 <Resource>
9 <Attribute AttributeId=" " DataType=" ">

10 <AttributeValue/>
11 </Attribute>
12 </Resource>
13 <Action>
14 <Attribute AttributeId=" " DataType=" ">
15 <AttributeValue/>
16 </Attribute>
17 </Action>
18 </Request>

Listing 3. Intermediate request 2

B. Policy-under-test analysis
The intermediate requests (derived as explained in Section

V-A) must be then filled with the values taken from the
policy under test for elements and attributes, so to obtain
executable and meaningful final requests. A simply random
value assignment would not be sufficient for exercising all
the policy functionalities, thus the necessity of a component
for the policy analysis.



Specifically the steps performed by this component are:
• Define four values sets: SubjectSet, ResourceSet,

ActionSet and EnvironmentSet respectively.
• Look for the matching attributes and elements that

appear in the target element of each rule, policy and
policySet element included in the policy under test.
They are defined in the SubjectMatch, ResourceMatch,
and ActionMatch sections of the Subjects, Resources,
and Actions respectively.

• Take the values of the AttributeValue elements and the
values of the attributes named AttributeId, Datatype,
Issuer and SubjectCategory of the SubjectMatch, Re-
sourceMatch, and ActionMatch and put them in the
SubjectSet, ResourceSet, ActionSet respectively.

• For each policy rule, take all values of the Attribute-
Value elements and all values of attributes named
AttributeId, Datatype and Issuer (optional) of the con-
dition section and put them in the SubjectSet, Re-
sourceSet, ActionSet, and EnvironmentSet, if they
refer to the SubjectAttributeDesignator, ResourceAt-
tributeDesignator, ActionAttributeDesignator or Envi-
ronmentAttributeDesignator elements respectively.

In Table I we show the result of the application of the
policy-under-test analysis component to the policy of Listing
1. Note that in this case EnvironmentSet is empty and
no values are associated to the Issuer and SubjectCategory
attributes.

For robustness and negative testing purposes the policy
analyzer component adds to each set of data (SubjectSet,
ResourceSet, ActionSet, and EnvironmentSet) random
values for elements and attributes.

C. Request values assignment
This component has the role of filling the intermediate

requests with the values of the SubjectSet, ResourceSet,
ActionSet, and EnvironmentSet sets. Note that, the num-
ber of requests to be filled can be established by the user
(see Section V-A).

In particular we define a subject entity as a combination
of the values of elements and attributes of the SubjectSet

Table I
ANALYSIS OF THE POLICY PRESENTED IN LISTING 1

AttributeId DataType AttributeValue
SubjectSet

role string professor
researcher

staff
subject-id string Julius

ResourceSet
resource-id anyURI http://library.com/record
resource-id anyURI http://library.com/record/journals

ActionSet
action-id string read
action-id string write

set, and similarly the resource entity, the action entity and
the environment entity as a combination of the values of the
elements and attributes of the ResourceSet, ActionSet, and
EnvironmentSet respectively. According to these defini-
tions the values assignment is performed with the following
steps:

• Derive the set of subject entities, resource entities,
action entities and environment entities.

• Generate the ValuesSet set with the combinations of a
subject entity, a resource entity, an action entity and an
environment entity following a combinatorial approach.
In particular, in the ValuesSet set the values are inserted
applying first pair-wise combination [14], [2]. Then,
if there are more intermediate requests to be filled,
a three-wise combination is applied. Finally, if there
are other intermediate requests not yet filled, applying
the 4-wise, generate all the possible combinations of
subject entity, resource entity, action entity and envi-
ronment entity and insert them in the ValuesSet set.

• Take the values from the ValuesSet set one by one
and use them for filling the intermediate requests as
described in the following:

– Note that each value of the ValuesSet set includes a
subject entity, resource entity, action entity and en-
vironment entity. Use the values of this subject en-
tity, resource entity, action entity and environment
entity to fill the values of elements and attributes
of the subject, resource, action and environment of
an intermediate instance respectively.

– If the ValuesSet set has been entirely used for
filling the intermediate requests, then take again
the ValuesSet values in the same order for filling
the remaining intermediate requests.

– If there are further elements and attributes in the
subjects, resource, action and environment of an
intermediate request, not yet filled with the values
of the subject entity, resource entity, action entity
and environment entity taken from the ValuesSet
set, then fill them randomly picking values of
elements and attributes from the SubjectSet, Re-
sourceSet, ActionSet and EnvironmentSet re-
spectively, excluding the subject entities, resource
entities, action entities and environment entities
already assigned.

In Listings 4 and 5 we show the final requests obtained
by filling the intermediate requests of Listings 2 and 3
respectively with the subject entities, resource entities and
action entities obtained from the values of the SubjectSet,
ResourceSet, ActionSet and EnvironmentSet of Table
I considering also the random values. Note that the value
(datastream:id) of the AttributeId attribute of one Attribute
element of the Resource section of the Listing 4 is a random
value included in the ResourceSet by the policy analyzer



component described in Section V-B.
1 <Request
2 xmlns=" u r n : o a s i s : n a m e s : t c : x a c m l : 1 .0 : c o n t e x t ">
3 <Subject>
4 <Attribute
5 AttributeId=" s u b j e c t - id "

6 DataType=" s t r i n g ">
7 <AttributeValue>Julius</AttributeValue>
8 </Attribute>
9 </Subject>

10 <Resource>
11 <Attribute
12 AttributeId=" r e s o u r c e - id "

13 DataType=" a n y U R I ">
14 <AttributeValue>http://library.com/record/journals</

AttributeValue>
15 </Attribute>
16 <Attribute
17 AttributeId=" d a t a s t r e a m : i d "

18 DataType=" a n y U R I ">
19 <AttributeValue>http://library.com/record</

AttributeValue>
20 </Attribute>
21 </Resource>
22 <Action>
23 <Attribute
24 AttributeId=" action - id "

25 DataType=" s t r i n g ">
26 <AttributeValue>read</AttributeValue>
27 </Attribute>
28 </Action>
29 </Request>

Listing 4. Final request 1

1 <Request
2 xmlns=" u r n : o a s i s : n a m e s : t c : x a c m l : 1 .0 : c o n t e x t ">
3 <Subject>
4 <Attribute
5 AttributeId=" s u b j e c t - id "

6 DataType=" s t r i n g ">
7 <AttributeValue>Julius</AttributeValue>
8 </Attribute>
9 </Subject>

10 <Resource>
11 <Attribute
12 AttributeId=" r e s o u r c e - id "

13 DataType=" a n y U R I ">
14 <AttributeValue>http://library.com/record</

AttributeValue>
15 </Attribute>
16 </Resource>
17 <Action>
18 <Attribute
19 AttributeId=" action - id "

20 DataType=" s t r i n g ">
21 <AttributeValue>write</AttributeValue>
22 </Attribute>
23 </Action>
24 </Request>

Listing 5. Final request 2

VI. AN EMPIRICAL EVALUATION

In this section, we discuss about the effectiveness of the
test suite generated by X-CREATE. In particular, we provide
a comparison between the tool Targen presented in [15],
and X-CREATE in terms of fault-detection capability. Even
if Targen does not consider the schema of requests, it can
be considered the most similar tool to X-CREATE to be
taken as a baseline for comparison, and it has been proven
to perform better than a random generation technique [15].

Table II
INDEX OF MUTATION OPERATORS

PTT Policy Target True
PTF Policy Target False
RTT Rule Target True
RTF Rule Target False
RCT Rule Condition True
RCF Rule Condition False
CRC Change Rule Combining Algorithm
CRE Change Rule Effect

Targen derives the set of requests satisfying all the possible
combinations of truth values of the attribute id-value pairs
found in the subject, resource, and action sections of each
target included in the policy under test. We refer to [15] for
more details.

For the comparison we used (see column 1 in Table III),
three policies presented in [15] (specifically demo-5, demo-
11, demo-26) and the policy presented in Listing 1, called
in the rest of this section PolicyExample.

We applied mutation analysis which is a standard tech-
nique to assess the quality of a test suite in terms of fault
detection [16]. Mutation has been applied here to introduce
faults into the policies.

We generated the mutants set considering the mutation
operators for XACML policies indicated in [17]. For the
sake of completeness we report in Table II the set of used
mutation operators. In particular, PTT, PTF, RTT, RTF, RCT
and RCF emulate syntactic faults into the policy and rule
target elements, and into the condition elements, producing
an evaluation of the predicates included in those elements
to always True or False. CRC and CRE, changing logical
constructs of XACML policies, emulate semantic faults. For
a more detailed description of the mutant operators we refer
to [17].

We applied the mutation operators of Table II to the
policies demo-5, demo-11, demo-26, and PolicyExample,
obtaining (see second column in Table III): 23, 22, and 17
mutants for demo-5, demo-11 and demo-26 respectively 3,
and 12 mutants for the PolicyExample. The sets of mutants
obtained have been used for answering the two Research
Questions:

TSEff Is the test suite derived by X-CREATE more effective
than that derived by Targen?

TSIncr Is X-CREATE provided capability to vary test request
number and structure useful to increase effectiveness?

Experimental answers to these questions are described
below.

RQ TSEff. Applying the methodology described in [15]
and implemented in Targen, we derived, to the best of
our understanding, a set of requests for the PolicyExample

3These mutants numbers correspond to those of the Table 4 (second
column) of [17] for the corresponding policies.



Table III
MUTANT-KILL RATIOS ACHIEVED BY TEST SUITES OF TARGEN AND X-CREATE

Targen X-CREATE
TSEff TSIncr

policy # Mut # Req Mut Kill % # Req Mut Kill % # Req Mut Kill %
demo-5 23 20 78.95 % 20 86.96 % 35 95.65 %
demo-11 22 16 77.78 % 16 81.82 % 18 95.45 %
demo-26 17 16 78.57 % 16 94.11 % 9 94.11 %

PolicyExample 12 12 75 % 12 75 % 14 83.33 %

policy. Note that, we only derived by Targen the test suite
for the PolicyExample because for the demo-5, demo-11 and
demo-26 we referred to [15] both for the cardinality of the
test suites and the percentage of mutants killed.

In parallel, by using X-CREATE, we generated the same
number of requests generated by the Targen tool for each
policy, so to get a fair comparison 4.

Finally, the test suite obtained by Targen 5 and those
derived by X-CREATE 6 have been executed on the associ-
ated policies, which has been taken as the golden reference
policies, and on their mutants. The same XACML imple-
mentation [18] has been used to validate the test suites of
Targen and X-CREATE against each policy and its mutants.
Each request in the requests set is executed on a policy
and on each of its mutants, if the produced responses are
different, then the mutant policy is killed by the request.

For each policy under test, Table III reports the number
of requests executed and the percentage of mutants killed
using the Targen test suite (3rd and 4th columns), and using
X-CREATE (5th and 6th columns).

We did not perform a qualitative analysis of the mutants
killed by the test suites derived by Targen and X-CREATE
but we relied on the percentage of mutants killed for demo-5,
demo-11 and demo-26, presented in [15] for a mutant killing
ratio comparison. Observing the obtained results we can
deduce that the effectiveness of our test suites is comparable
with, or higher than, that provided by the test suites derived
by Targen tool.

In particular, an advantage of our approach is that it
considers also the attribute id-value pairs found in the rule
condition in addition to the those found in each policy and
rule target.

RQ TSIncr. According to the description of the Targen
tool provided in [15], a finite number of requests can be
generated. This number is equal to all possible combinations
of truth values of the attribute id-value pairs found in the
subjects, resources, and actions of each target included in
the policy.

4Note that, by X-CREATE it is possible to generate a user defined
number of requests by deriving a defined number of intermediate instances
by the TAXI tool (see Section V-A) and populating them with policy values
as described in Section V-B and Section V-C.

5for PolicyExample
6for demo-5, demo-11, demo-26 and PolicyExample

X-CREATE does not have such a limitation by providing
a higher variability in the number of generated requests.
As described in Section V, the number of structurally
different requests derived by X-CREATE is up-bounded by
the application of the XPT methodology to the Context
Schema.

Then, we increased one at a time the number of interme-
diate instances derived by TAXI. We filled the new derived
intermediate instance with a value not already assigned of
the ValuesSet corresponding to the policy as described in
Section V-C and evaluated the fault detection capability
of the obtained test suite. In this way, we augmented the
test sets associated to the four policies in the previous
experiment, until the maximum percentage of mutants killed
was achieved.

We report in the last two columns of Table III the
final obtained results. Note that, the last column shows the
maximum reachable percentage of mutants killed. The 100%
was not feasible because in the set of mutants for demo-
5, demo-11 and demo-26 there was an equivalent mutant
while for PolicyExample there were two. In particular, for
demo-5, demo-11 and demo-26 the equivalent mutants are
those obtained by changing (CRC mutation operator) the
existing rule combining algorithm with the deny-overrides
algorithm. For PolicyExample the two equivalent mutants
are those obtained by changing (CRC mutation operator) the
existing rule combining algorithm with the deny-overrides
and permit-overrides algorithms respectively.

The column before last represents the minimum number
of requests needed for achieving the higher number of
mutants killed for each policy. Note that for demo-26 this
number is smaller than the requests used before. In this
case, because the maximum percentage was already reached
(94.11% in the 6th column of Table III), we decremented the
original set of requests till the percentage of fault detection
effectiveness was guaranteed. Thus 9 requests instead of 16
were required.

The preliminary conclusions we can draw from this initial
evaluation of X-CREATE are:

• Considering the mutant operators of [17], we observed
a comparable or greater fault detection effectiveness
than existing approaches, i.e., Targen.

• X-CREATE provides arbitrary variability in number of



generated requests, in their structure, and their values,
which can result in improved effectiveness.

Of course such conclusions must be taken in light of
the threats to validity of the performed experiment. The
first point must be mitigated against the limited scope of
the case study: we only compared X-CREATE to Targen,
and only for few and small policies. We need to make
larger experiments to generalize the statement. Moreover,
we considered the mutation operators of [17], because these
are those referred to by Targen evaluation. Different results
might be observed using different mutation operators, e.g.
those in [8]. Concerning internal validity, we referred, where
available, to the results in [15] without repeating their
experiment. Due to the limited dimension of the test suite we
report the results on a single run of X-CREATE. In the future
we plan to study larger case studies and collect average
results of achieved mutation score over repeated executions
of the experiment.

VII. CONCLUSIONS

Testing of access control systems is a critical activity for
security assurance. Current approaches, which are gener-
ally based on the policy specification, do not exploit the
XACML Context Schema, which establishes the rules to
which access requests should conform. We propose here
the testing framework called X-CREATE which exploits this
schema. The framework consists of three main components:
an intermediate-request generator, which is based on the
XML Partition Testing (XPT) approach for request structures
generation; a policy analyzer which selects the input values
from the policy; and a values manager, which distributes
the input values to the request structures. We get a generic
conformance test suite, for all the XACML policies, that can
be characterized as desired with specific policy values. We
have performed a comparison between X-CREATE and the
existing tool Targen in terms of fault-detection capability,
and the results obtained show that X-CREATE has a similar
or superior fault detection effectiveness, and yields a higher
expressiveness, as it can generate requests showing higher
structural variability. In future, we plan to assess X-CREATE
application to the two envisaged testing scenarios: Testing
the policy implementation correctness; Testing the policy
specification correctness.

ACKNOWLEDGMENTS

This work has been partially funded by EC FP7 under
Grant Agreement N. 216287 (TAS3 - Trusted Architecture
for Securely Shared Services).

REFERENCES

[1] OASIS, “eXtensible Access Control Markup
Language (XACML) Version 1.0,” http://www.oasis-
open.org/committees/xacml/, February 2003.

[2] A. Pretschner, T. Mouelhi, and Y. Le Traon, “Model-based
tests for access control policies,” in Proc. of ICST, 2008, pp.
338–347.

[3] T. J. Ostrand and M. J. Balcer, “The category-partition method
for specifying and generating functional tests,” Commun.
ACM, vol. 31, no. 6, pp. 676–686, 1988.

[4] K. Fisler, S. Krishnamurthi, L. Meyerovich, and M. Tschantz,
“Verification and change-impact analysis of access-control
policies,” in Proc. of ICSE, 2005, pp. 196–205.

[5] E. Martin and T. Xie, “Automated test generation for access
control policies via change-impact analysis,” in Proc. of SESS,
May 2007, pp. 5–11.

[6] K. Li, L. Mounier, and R. Groz, “Test generation from
security policies specified in or-BAC,” in Proc. of COMPSAC,
2007, pp. 255–260.

[7] W. Mallouli, J. Orset, A. Cavalli, N. Cuppens, and F. Cuppens,
“A formal approach for testing security rules,” in Proc. of
ACMT, 2007, p. 132.

[8] Y. Traon, T. Mouelhi, and B. Baudry, “Testing security
policies: going beyond functional testing,” in Proc. of ISSRE,
2007, pp. 93–102.

[9] A. Masood, A. Ghafoor, and A. Mathur, “Test Generation
for Access Control Systems that Employ RBAC Policies,”
SERC-TR-283, Purdue University, Tech. Rep., 2005.

[10] Y. Le Traon, T. Mouelhi, A. Pretschner, and B. Baudry, “Test-
Driven Assessment of Access Control in Legacy Applica-
tions,” in Proc. of ICST, 2008, pp. 238–247.

[11] N. Li, J. Hwang, and T. Xie, “Multiple-implementation testing
for XACML implementations,” in Proc. of TAV-WEB, 2008,
pp. 27–33.

[12] A. Bertolino, J. Gao, E. Marchetti, and A. Polini, “Automatic
test data generation for XML schema-based partition testing,”
in Proc. of AST, May 2007.

[13] ——, “TAXI – A Tool for XML-Based Testing,” in Proc. of
ICSE Companion, 2007, pp. 53–54.

[14] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton, “The AETG system: An approach to testing based on
combinatiorial design,” IEEE Trans. on Soft. Eng., vol. 23,
no. 7, pp. 437–444, Jul. 1997.

[15] E. Martin and T. Xie, “Automated test generation for access
control policies,” in Supplemental Proc. of ISSRE, November
2006.

[16] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer,
vol. 11, no. 4, pp. 34–41, 1978.

[17] E. Martin and T. Xie, “A fault model and mutation testing
of access control policies,” in Proc. of WWW, May 2007, pp.
667–676.

[18] Sun Microsystems, “Sun’s XACML Implementation,”
http://sunxacml.sourceforge.net/, 2006.


